VHE γ-rays from

Supernova Remnants

SNRs: The (very) Basic Structure

• Pulsar Wind

- sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

• Supernova Remnant

- sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; particles accelerated at forward shock generate turbulence; other particles scatter from waves and receive additional acceleration

SNRs: The (very) Basic Structure

• Pulsar Wind

- sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

• Supernova Remnant

- sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; particles accelerated at forward shock generate turbulence; other particles scatter from waves and receive additional acceleration

Shocks in SNRs

- Expanding blast wave moves supersonically through CSM/ISM; creates shock
 - mass, momentum, and energy conservation across shock give (with $\gamma=5/3$)

$$\rho_1 = \frac{\gamma + 1}{\gamma - 1} \rho_0 = 4\rho_0$$

$$\mathbf{v}_1 = \frac{\gamma - 1}{\gamma + 1} \, \mathbf{v}_0 = \frac{\mathbf{v}_0}{4}$$

$$\rho_{1} = \frac{\gamma + 1}{\gamma - 1} \rho_{0} = 4 \rho_{0} v_{1} = \frac{\gamma - 1}{\gamma + 1} v_{0} = \frac{v_{0}}{4} T_{1} = \frac{2(\gamma - 1)}{(\gamma + 1)^{2}} \frac{\mu}{k} m_{H} v_{0}^{2} = 1.3 \times 10^{7} v_{1000}^{2} K$$

$$V_{ps} = \frac{3V_s}{4}$$

- X-ray emitting temperatures
- Shock velocity gives temperature of gas - can get from X-rays (modulo NEI effects)
- If cosmic-ray pressure is present the temperature will be lower than this
 - radius of forward shock affected as well

Patrick Slane (CfA)

Future of VHE γ-ray Astronomy (Chicago, 5/13/07)

Shocks in SNRs

- Expanding blast wave moves supersonically through CSM/ISM; creates shock
 - mass, momentum, and energy conservation across shock give (with $\gamma=5/3$)

$$\rho_{1} = \frac{\gamma + 1}{\gamma - 1} \rho_{0} = 4\rho_{0} \quad v_{1} = \frac{\gamma - 1}{\gamma + 1} v_{0} = \frac{v_{0}}{4}$$

$$v_{ps} = \frac{3v_{s}}{4}$$

- Shock velocity gives temperature of gas
 can get from X-rays (modulo NEI effects)
- If cosmic-ray pressure is present <u>the</u>
 temperature will be lower than this
 radius of forward shock <u>affected as well</u>

Particle Acceleration in SNRs

- Require quasi-parallel shock to set up turbulence from particles streaming upstream
 - the waves from the turbulence confine particles to shock region to provide further acceleration
 - only some regions of the SNR are likely to be efficient accelerators

- Total efficiency in DSA can be very high (>50%)
 - no obvious problem coming up with significant contribution to CR spectrum
- Maximum energy limited by:
 - particle escape from shock
 - finite age of SNR (limit on total acceleration time)
 - synchrotron losses (for electrons)
- Radio and X-ray data appear to require strong B fields
 - curvature of radio spectrum; thickness of synchrotron filaments

Particle Acceleration in SNRs

- Require quasi-parallel shock to set up turbulence from particles streaming upstream
 - the waves from the turbulence confine energetic particles to shock region to provide further acceleration
 - only some regions of the SNR are likely to be efficient accelerators
- Total efficiency in DSA can be very high (>50%)
 - no obvious problem coming up with significant contribution to CR spectrum
- Maximum energy limited by:
 - particle escape from shock
 - finite age of SNR (limit on total acceleration time)
 - synchrotron losses (for electrons)

Electrons:

- large B lowers max energy due to synch. losses

Ions:

- small B lowers max energy due to inability to confine energetic particles

<u>Current observations</u> <u>suggest high B fields</u>

γ-ray Emission from SNRs

- Neutral pion decay
 - ions accelerated by shock collide w/ ambient protons, producing pions in process: $\pi^{\circ} \longrightarrow \gamma\gamma$
 - flux proportional to ambient density; SNR-cloud interactions particularly likely sites
- Inverse-Compton emission
 - energetic electrons upscatter ambient photons to γ -ray energies
 - CMB, plus local emission from dust and starlight, provide seed photons

- High B-field can flatten IC spectrum
 - also reduces IC flux relative to synchrotron
 - difficult to differentiate cases; VHE observations crucial

Broadband Emission from SNRs

- synchrotron emission dominates spectrum from radio to x-rays
 - shock acceleration of electrons (and protons) to > 10¹³ eV

E_{max} set by age or energy losses – observed as spectral turnover

- inverse-Compton scattering probes same electron population; need self-consistent model w/ synchrotron
- pion production depends on density
 - TeV observations required (as well as GLAST)

γ -rays from G347.3-0.5

- evidence for cosmic-ray acceleration
- based on X-ray synchrotron emission, infer electron energies of ~50 TeV

- This SNR is detected directly in TeV gamma-rays, by HESS
 - γ-ray morphology very similar to x-rays; suggests I-C emission
 - spectrum seems to suggest π^o -decay WHAT IS EMISSION MECHANISM?

Modeling the Emission

- Joint analysis of radio, X-ray, and γ-ray data allow us to investigate the broad band spectrum
 - data can be accommodated along with EGRET upper limits, with no contributions from pion decay
 - large magnetic field is required,
 with relatively small filling factor
- However... HESS spectrum is completely inconsistent with that reported by CANGAROO
 - broader spectrum suggests pion origin,
 <u>but</u> implied densities appear in conflict
 with thermal X-ray upper limits
- <u>BUT</u>... strong magnetic field can flatten inverse-Compton spectrum
 - ORIGIN NOT YET CLEAR

Modeling the Emission

- Joint analysis of radio, X-ray, and γ -ray data allow us to investigate the broad band spectrum
 - data can be accommodated along with EGRET upper limits, with no contributions from pion decay
 - <u>large magnetic field</u> is required, with relatively small filling factor
- However... HESS spectrum is completely inconsistent with that reported by CANGAROO
 - broader spectrum suggests pion origin,
 <u>but</u> implied densities appear in conflict
 with thermal X-ray upper limits
- <u>BUT</u>... strong magnetic field can flatten inverse-Compton spectrum
 - ORIGIN NOT YET CLEAR

Other TeV SNR Examples

Vela Jr.

W28

- Similar in appearance and flux to RX J1713
 - nearby and young
 - unclear whether spectrum is IC or pp

- Interaction with molecular cloud, or emission from the cloud?
 - emission also evident from nearby HII regions

Aside: Evidence for CR Ion Acceleration

Warren et al. 2005

- Efficient particle acceleration in SNRs affects dynamics of shock
 - for given age, FS is closer to CD and RS with efficient CR production
- This is observed in Tycho's SNR
 - "direct" evidence of CR ion acceleration

Aside: Evidence for CR Ion Acceleration

- Efficient particle acceleration in SNRs affects dynamics of shock
 - for given age, FS is closer to CD and RS with efficient CR production
- This is observed in Tycho's SNR
 - "direct" evidence of CR ion acceleration

Aside: Evidence for CR Ion Acceleration

Contact Discontinuity

- Efficient particle acceleration in SNRs affects dynamics of shock
 - for given age, FS is closer to CD and RS with efficient CR production
- This is observed in Tycho's SNR
 - "direct" evidence of CR ion acceleration

TeV Sensitivity for SNRs

• The expected $\pi^{o} \rightarrow \gamma \gamma$ flux for an SNR is

$$F(>E_{TeV}) \approx 5 \times 10^{-11} \varepsilon E_{51} d_{kpc}^{-2} n E_{TeV}^{1-\alpha} \text{ phot cm}^{-2} \text{ s}^{-1}$$

where ϵ is the efficiency, α is the spectral index of the particles, and n is the ambient density (Drury et al. 1994)

- nearby SNRs should be strong TeV sources, particularly in regions of high density
- \bullet Efficient acceleration can result in higher values for I-C γ -rays
 - spectra in TeV band can constrain the emission mechanism
 - high sensitivity needed for distant SNR

(Note that efficiency can be >> 0.1)

Why Do We Need Higher Sensitivity?

• Spectra

- current spectra for brightest SNRs are not quite sufficient for determining nature of emission or clearly defining cut-offs
- need to be able to determine this for these and fainter sources

• More sources:

- the conditions for efficient particle acceleration aren't wellunderstood; we need a <u>much</u> larger sample of sources

Detect old SNRs

- a large fraction of the total energetic particle population accelerated by SNRs is produced late in their lives, when the remnants are very large
 - => surface brightness is very low

Contributions from PWNe: MSH 15-52

- Unshocked wind from pulsar expected to have $\gamma = 10^6$
 - X-ray synchrotron emission requires γ > 10⁹
 - acceleration at wind termination shock

Contributions from PWNe: MSH 15-52

- Unshocked wind from pulsar expected to have $\gamma = 10^6$
 - X-ray synchrotron emission requires $\gamma > 10^9$
 - acceleration at wind termination shock
- HESS observations reveal extended jet that corresponds to X-ray structure
 - spectrum well-described by inverse-Compton emission dominated by local IR field from dust

Contributions from PWNe: Vela X

- Elongated hard X-ray structure extends southward of pulsar
 - clearly identified by HESS
 - this is not the pulsar jet (which is known to be directed to NW)
 - presumably relic nebula that has been disturbed by (asymmetric) passage of reverse shock
- Similar extended structures seen offset from field pulsars
 - deep TeV studies needed

Summary

- SNRs are efficient accelerators of cosmic ray electrons and ions
 - expect production of γ -rays from $\pi^o \rightarrow \gamma \gamma$ and I-C processes
 - current TeV sensitivity can detect brightest SNRs
 - spectra can provide crucial input for differentiating between emission mechanisms
- Radio/X-ray observations provide constraints on energetic particles, but extension to higher energies is crucial to understand maximum particle energies and accelaration mechanisms
 - higher TeV sensitivity is needed to better constrain current results and to reveal new sources
- TeV telescopes are already breaking new ground on PWN work
 - detection of jets holds promise for other PWNe
 - very large structures offset from pulsars may be identifying a large class of PWNe in post-RS interaction phase
 - higher angular resolution is of interest here